Variety of Mechanically Induced Spin Currents in Rashba Systems
© The Physical Society of Japan
This article is on
J. Phys. Soc. Jpn.
92,
113702
(2023)
.
Various types of spin currents, including unconventional types, are generated in Rashba spinorbit coupled systems by dynamic lattice distortions associated with, for example, surface acoustic waves.
Spin current, the flow of spin angular momentum, is a central element in spintronics for future technological applications. Thus, elucidating various mechanisms to generate spin currents is an important topic. Since the discovery of the gyromagnetic effect more than 100 years ago by Einstein, de Haas, and Barnett, spin angular momentum has been known to be mutually converted with the mechanical angular momentum associated with rotational motion of materials. This suggests that spin currents can be generated mechanically. Presentday experiments have shown that spin currents are generated by shear flows in liquid metals and by surface acoustic waves in solids.
The electron spin also interacts with its orbital motion through relativistic effects, that is, the spinorbit interaction (SOI). The SOI is responsible for various spincurrent generation methods because it bends the electron orbits in spindependent directions. In particular, the Rashba SOI appears in systems with broken spatial inversion symmetries, such as at the surfaces and interfaces of materials. When generating spin currents using surface acoustic waves, the effects of Rashba SOI may be utilized.
In this study, we investigated spincurrent generation from dynamic lattice distortions in systems with Rashba SOI. Unlike prior theoretical studies, we started from a multiorbital tightbinding model to derive a Rashba model perturbed by lattice distortions. This method enabled us to treat the lattice distortion effects microscopically through the modulation of hopping integrals and local rotation of the crystal axes. By calculating the linear response to the effective perturbations, we observed that surface acoustic waves can generate a variety of spin currents through the Rashba SOI, including unconventional spin currents, such as the quadrupolar spin current, perpendicular spin current, and helicity current.
Written by Y. Ogawa on behalf of all authors.
J. Phys. Soc. Jpn.
92,
113702
(2023)
.
Share this topic
Fields
Related Articles

Chiral Gauge Field and Topological Magnetoelectric Response in Fully SpinPolarized Magnetic Weyl Semimetal Co_{3}Sn_{2}S_{2}
Electronic transport in condensed matter
Magnetic properties in condensed matter
2024111
This study clarifies the relationship between magnetic ordering and chiral gauge fields in the ferromagnetic Weyl semimetal Co_{3}Sn_{2}S_{2}, highlighting its spintronic potential using the topological magnetoelectric responses of Weyl fermions.

Electricity Provides Cooling
Crossdisciplinary physics and related areas of science and technology
Magnetic properties in condensed matter
Structure and mechanical and thermal properties in condensed matter
20241015
Electric cooling at low temperatures is successfully achieved using a ferroelectric ferromagnetic solid instead of refrigerant gases such as fluorocarbons. 
PressureTuned Classical–Quantum Crossover in Magnetic FieldInduced Quantum Phase Transitions of a TriangularLattice Antiferromagnet
Crossdisciplinary physics and related areas of science and technology
Electron states in condensed matter
Magnetic properties in condensed matter
202495
The correspondence principle states that as quantum numbers approach infinity, the nature of a system described by quantum mechanics should match that described by classical mechanics. Quantum phenomena, such as quantum superposition and quantum correlation, generally become unobservable when a system approaches this regime. Conversely, as quantum numbers decrease, classical descriptions give way to observable quantum effects. The external approach to classical–quantum crossover has attracted research interest. This study aims to demonstrate a method for achieving such control in materials.

Discovery of LightInduced Mirror Symmetry Breaking
Dielectric, optical, and other properties in condensed matter
Electronic transport in condensed matter
202492
The authors discovered the lightinduced mirror symmetry breaking, paving the way for controlling mirror symmetries via light and for realizing various phenomena utilizing the mirror symmetry breaking.

Discovery of Unconventional PressureInduced Superconductivity in CrAs
Electronic transport in condensed matter
Superconductivity
2024813
A new study has discovered pressureinduced superconductivity in the helimagnet CrAs, originating in the vicinity of the helimagnetic ordering, representing the first example of superconductivity in Crbased magnetic systems.